p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.2C42, C23⋊C4⋊2C4, (C22×C8)⋊3C4, (C2×Q8).1Q8, (C2×D4).40D4, (C2×M4(2))⋊3C4, (C22×C4).36D4, C4.25(C23⋊C4), C23.2(C22⋊C4), C2.13(C23.9D4), C23.C23.1C2, C22.2(C2.C42), (C2×C4).2(C4⋊C4), (C2×D4).44(C2×C4), (C22×C4).64(C2×C4), (C2×C4○D4).1C22, (C2×C4).349(C22⋊C4), (C22×C8)⋊C2.10C2, SmallGroup(128,123)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.2C42
G = < a,b,c,d,e | a2=b2=c2=d4=1, e4=c, ab=ba, ac=ca, dad-1=abc, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=abcd >
Subgroups: 208 in 83 conjugacy classes, 30 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C22⋊C8, C23⋊C4, C23⋊C4, C42⋊C2, C22×C8, C2×M4(2), C2×C4○D4, (C22×C8)⋊C2, C23.C23, C23.2C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C23.9D4, C23.2C42
Character table of C23.2C42
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 2 | 4 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | -i | i | i | -i | -i | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | 1 | 1 | -1 | -1 | i | -i | i | i | -i | i | -i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -i | i | -i | i | -1 | 1 | 1 | -i | i | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | i | 1 | 1 | -1 | -1 | -i | i | -i | -i | i | -i | i | -i | i | linear of order 4 |
ρ9 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | -i | i | i | -i | i | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | i | i | -i | -i | i | -i | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | -i | i | i | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | i | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | -i | i | -i | linear of order 4 |
ρ14 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | i | -i | i | -i | -1 | 1 | 1 | i | -i | i | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | 1 | -1 | -1 | i | -i | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | 1 | -1 | -1 | -i | i | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ8 | 2ζ83 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ85 | 2ζ87 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ83 | 2ζ8 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ87 | 2ζ85 | 0 | 0 | complex faithful |
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 7 5 3)(2 9 28 20)(4 11 30 22)(6 13 32 24)(8 15 26 18)(10 19)(12 21)(14 23)(16 17)(25 27 29 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,7,5,3)(2,9,28,20)(4,11,30,22)(6,13,32,24)(8,15,26,18)(10,19)(12,21)(14,23)(16,17)(25,27,29,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,7,5,3)(2,9,28,20)(4,11,30,22)(6,13,32,24)(8,15,26,18)(10,19)(12,21)(14,23)(16,17)(25,27,29,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,7,5,3),(2,9,28,20),(4,11,30,22),(6,13,32,24),(8,15,26,18),(10,19),(12,21),(14,23),(16,17),(25,27,29,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
Matrix representation of C23.2C42 ►in GL4(𝔽17) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
4 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 4 | 0 |
13 | 13 | 13 | 4 |
13 | 13 | 4 | 13 |
13 | 4 | 13 | 13 |
4 | 13 | 13 | 13 |
G:=sub<GL(4,GF(17))| [0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[4,0,0,0,0,13,0,0,0,0,0,4,0,0,13,0],[13,13,13,4,13,13,4,13,13,4,13,13,4,13,13,13] >;
C23.2C42 in GAP, Magma, Sage, TeX
C_2^3._2C_4^2
% in TeX
G:=Group("C2^3.2C4^2");
// GroupNames label
G:=SmallGroup(128,123);
// by ID
G=gap.SmallGroup(128,123);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,570,521,172,4037]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^4=c,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*c*d>;
// generators/relations
Export